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ABSTRACT
Over the last decade, CardioVascular Diseases (CVD) and allied
heart disorders have been the leading cause of death world wide.
Early prediction of CVD can help high-risk patients make lifestyle
changes and as a result can reduce complications. Researchers in
the past have worked on developing computational models to aid
health care professionals in the prediction of CVD. Most of the
existing techniques lack precise feature sets and suffer from high
overfitting and low accuracy. To present more accurate model of
predicting CVD along with employing better feature set, ensemble
learning models along with individual classification techniques are
proposed. Extensive performance analyses on Kaggle Cleveland
Heart Disease dataset clearly show our model can significantly
improve on the accuracy and F1-score than some of the existing
competitors.
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1 INTRODUCTION AND RELATEDWORK
An early prediction of the CVD can help us to overcome many
health issues and save human lives. Predicting the outcome of a dis-
ease using a computational model is one of the most interesting and
complex task which experts in the healthcare domain can use it for.
In the healthcare industry, Data Mining and Machine Learning have
been used to define appropriate treatment approaches, anticipate
illness risk factors, and determine effective patient care cost struc-
tures. Existing research work focussing on predicting CVD can be
found from [2, 3, 5] and prediction of heart related diseases can be
seen in [1, 6–8]. To the best of our knowledge, most of the existing
methods lack better feature selection models, testing with multiple
train-test splits and also have not incorporated cross validations
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for better performance through a high accurate model, which lead
to the motivation of this work. Also they focused on a standalone
Machine Learning model to predict heart diseases. In this work,
an attempt is made to improve accuracy of the prediction model
using various ensemble learning methods. The methodology aims
to predict CVD and compare the efficiency of combining the results
of hybrid models along standalone models. Our novel approach
differs from others in that, we use efficient feature selection and
ensemble methods for designing a high accurate prediction model
for CVD, to reduce the possibility of overfitting.

2 PROPOSED ARCHITECTURE
The purpose of this study is to predict Cardiovascular Disease using
various ensemble methods in Machine Learning. The benchmark
dataset we considered contains 303 records, 14 attributes and 2
class labels and is preprocessed accordingly. As given in Figure
1, we used the Univariate feature selection method to choose the
relevant features. We use feature importance method as it helps
in better data comprehension, better understanding of the model
by reducing the number of input features to output the features
that are more relevant to the target attribute. The data is split into
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Figure 1: Our proposed Architecture for CVD prediction

training and testing sets using 5-fold and 10-fold cross validation
along 5, 20, 25, 30, 33, 40 and 50 percent test splits on which we
ran six individual classification models as given in Figure 1. Since,
ensemble learning helps in reducing the variance component of
prediction errors and increases the predictive power of the model,
it is decided to use various ensemble learning methods such as: Ma-
jority Voting, Weighted Average, Bagging, and Boosting Methods.
The predictions from multiple models are combined in a voting
ensemble which can be used to classify or predict data. Majority
Voting helps to improve model performance, Bagging helps in low-
ering the variance and Gradient Boosting improves the efficiency
of an algorithm by removing overfitting.
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3 RESULTS AND DISCUSSIONS
We used the Cleveland heart disease dataset [4] from Kaggle repos-
itory to train and test our model using various ensemble learning
methods. Chest pain type, Thalach (maximum heart rate achieved),
Exang (exercise induced angina), Oldpeak (ST depression induced
by exercise relative to rest), Number of major vessels (0-4) colored
by fluoroscopy and Thalassemia are the 6 best features selected by
our model. We assessed using Accuracy, Precision, Recall, F1-score,
and AUC where Fig. 2(a) compares the best accuracies obtained
with the various feature selection methods. 5- fold and 10-fold cross-
validation are used to avoid overfitting and the results are compared
using various test sizes and found that 5-fold is doing better. We
splitted the dataset for testing into 5, 20, 25, 30, 33, 40 percents
and compared the efficiency of our model as shown in Fig. 2(b).
The time taken for the model in 5, 20, 25, 30, 33 and 40 percentage
test splits are 0.06, 0.08, 0.09, 0.09, 0.09 and 0.1 sec. respectively. As
per Fig. 2(b), we observe that most of our methods perform well
in the 80:20 ratio with SVM+LR in Majority Voting giving highest
accuracy of 0.9123. This is due to the fact that SVM works well
with unstructured, semi-structured data and Logistic Regression is
easier to implement, interpret and train. Fig. 3 depicts a compari-
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Figure 2: Accuracy of our proposed approach
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Figure 3: Performance of Proposed approach (5-fold cross
validation) with existing algorithms

son of the performance of our approach after cross-validation with
the existing competitors. SVM+LR gave the highest accuracy and
this is due to the fact of using feature importance in our feature
selection methods and ensemble learning. Our proposed LR, SVM,
FFNN and Bagging with novel feature importance has achieved
significant accuracy of 0.901, 0.91, 0.901 and 0.89 which is higher
than [3], [2], [1] and [5].

4 CONCLUSIONS AND FUTUREWORK
To predict CVD, we observe that ensemble learning methods with
efficient feature set creation performs better than the existing mod-
els. A possible extension to this could be the use of various deep
learning models with hyper parameter tuning. Since heart diseases
are affected significantly by factors such as sleep disorder condi-
tions, stress mismanagement conditions and pollution factors, we
could potentially include these factors as features.
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